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Exercise 2.5.7

Solve Laplace’s equation inside a 60° wedge of radius a subject to the boundary conditions [Hint :
In polar coordinates,

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ)G(r), then r
G
d
dr

(
r dGdr

)
= − 1

φ
d2φ
dθ2

.]:

(a) u(r, 0) = 0, u
(
r,
π

3

)
= 0, u(a, θ) = f(θ)

(b)
∂u

∂θ
(r, 0) = 0,

∂u

∂θ

(
r,
π

3

)
= 0, u(a, θ) = f(θ)

Note: The variable a should be italicized.

Solution

Because the Laplace equation and all but one of its associated boundary conditions are linear and
homogeneous, the method of separation of variables can be applied to solve it. Assume a product
solution of the form u(r, θ) = R(r)Θ(θ) and plug it into the PDE.

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0

1

r

∂

∂r

[
r
∂

∂r
R(r)Θ(θ)

]
+

1

r2
∂2

∂θ2
R(r)Θ(θ) = 0

Θ(θ)

r

d

dr

(
r
dR

dr

)
+
R(r)

r2
d2Θ

dθ2
= 0

Multiply both sides by r2/[R(r)Θ(θ)] in order to separate variables.

r

R(r)

d

dr

(
r
dR

dr

)
+

1

Θ(θ)

d2Θ

dθ2
= 0

r

R(r)

d

dr

(
r
dR

dr

)
= − 1

Θ(θ)

d2Θ

dθ2

The only way a function of r can be equal to a function of θ is if both are equal to a constant λ.

r

R(r)

d

dr

(
r
dR

dr

)
= − 1

Θ(θ)

d2Θ

dθ2
= λ

As a result of separating variables, the PDE has reduced to two ODEs—one in each independent
variable.

r

R

d

dr

(
r
dR

dr

)
= λ

− 1

Θ

d2Θ

dθ2
= λ


Values of λ for which nontrivial solutions to these ODEs and the associated boundary conditions
exist are called eigenvalues, and the solutions themselves are called eigenfunctions. Note that it
doesn’t matter whether the minus sign is grouped with r or θ as long as all eigenvalues are taken
into account.

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.5 - Exercise 2.5.7 Page 2 of 8

Part (a)

Substitute the product solution u(r, θ) = R(r)Θ(θ) into the homogeneous boundary conditions.

u(r, 0) = 0 → R(r)Θ(0) = 0 → Θ(0) = 0

u
(
r,
π

3

)
= 0 → R(r)Θ

(π
3

)
= 0 → Θ

(π
3

)
= 0

Solve the ODE for Θ.
d2Θ

dθ2
= −λΘ

Check to see whether there are positive eigenvalues: λ = µ2.

d2Θ

dθ2
= −µ2Θ

The general solution can be written in terms of sine and cosine.

Θ(θ) = C1 cosµθ + C2 sinµθ

Apply the boundary conditions to determine C1 and C2.

Θ(0) = C1 = 0

Θ
(π

3

)
= C1 cosµ

π

3
+ C2 sinµ

π

3
= 0

This first equation makes the second equation reduce to C2 sinµπ3 = 0. To avoid the trivial
solution, we insist that C2 6= 0.

sinµ
π

3
= 0

µ
π

3
= nπ, n = 1, 2, . . .

µ = 3n

There are positive eigenvalues λ = (3n)2, and the eigenfunctions associated with them are

Θ(θ) = C2 sinµθ → Θn(θ) = sin 3nθ.

Using λ = 9n2, solve the ODE for R now.

r

R

d

dr

(
r
dR

dr

)
= 9n2

Expand the left side.
r

R
(R′ + rR′′) = 9n2

Multiply both sides by R and bring all terms to the left side.

r2R′′ + rR′ − 9n2R = 0

This is an equidimensional ODE, so it has solutions of the form R(r) = rm.

R = rm → R′ = mrm−1 → R′′ = m(m− 1)rm−2
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Substitute these formulas into the ODE and solve the resulting equation for m.

r2m(m− 1)rm−2 + rmrm−1 − 9n2rm = 0

m(m− 1)rm +mrm − 9n2rm = 0

m(m− 1) +m− 9n2 = 0

m2 − 9n2 = 0

(m+ 3n)(m− 3n) = 0

m = {−3n, 3n}

Two solutions to the ODE are R = r−3n and R = r3n. By the principle of superposition, the
general solution for R is a linear combination of these two.

R(r) = Ar−3n +Br3n

Now check to see if zero is an eigenvalue.

d2Θ

dθ2
= 0

The general solution is a straight line.

Θ(θ) = C3θ + C4

Apply the two boundary conditions to determine C3 and C4.

Θ(0) = C4 = 0

Θ
(π

3

)
= C3

π

3
+ C4 = 0

This first equation makes the second equation reduce to C3
π
3 = 0, which makes C3 = 0.

Θ(θ) = 0

The trivial solution is obtained, so zero is not an eigenvalue. Check to see if there are negative
eigenvalues: λ = −γ2.

d2Θ

dθ2
= γ2Θ

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Θ(θ) = C5 cosh γθ + C6 sinh γθ

Apply the two boundary conditions to determine C5 and C6.

Θ(0) = C5 = 0

Θ
(π

3

)
= C5 cosh γ

π

3
+ C6 sinh γ

π

3
= 0

This first equation makes the second equation reduce to C6 sinh γ π3 = 0. No nonzero value of γ
can satisfy this equation, so C6 = 0.

Θ(θ) = 0
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The trivial solution is obtained, so there are no negative eigenvalues. According to the principle
of superposition, the general solution to the PDE is a linear combination of the eigenfunctions
over all the eigenvalues.

u(r, θ) =

∞∑
n=1

(Anr
−3n +Bnr

3n) sin 3nθ

For the solution to remain finite as r → 0, set An = 0.

u(r, θ) =
∞∑
n=1

Bnr
3n sin 3nθ

Use the boundary condition at r = a to determine the remaining constants Bn.

u(a, θ) =
∞∑
n=1

Bna
3n sin 3nθ = f(θ)

Multiply both sides by sin 3pθ, where p is an integer.

∞∑
n=1

Bna
3n sin 3nθ sin 3pθ = f(θ) sin 3pθ

Integrate both sides with respect to θ from 0 to π/3.

ˆ π/3

0

∞∑
n=1

Bna
3n sin 3nθ sin 3pθ dθ =

ˆ π/3

0
f(θ) sin 3pθ dθ

Bring the constants in front of the integral.

∞∑
n=1

Bna
3n

ˆ π/3

0
sin 3nθ sin 3pθ dθ =

ˆ π/3

0
f(θ) sin 3pθ dθ

Because the sine functions are orthogonal, this integral on the left is zero if n 6= p. Only if n = p
does the integral yield a nonzero result.

Bna
3n

ˆ π/3

0
sin2 3nθ dθ =

ˆ π/3

0
f(θ) sin 3nθ dθ

Bna
3n
(π

6

)
=

ˆ π/3

0
f(θ) sin 3nθ dθ

Therefore,

Bn =
6

πa3n

ˆ π/2

0
f(θ) sin 2nθ dθ.
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Part (b)

Substitute the product solution u(r, θ) = R(r)Θ(θ) into the homogeneous boundary conditions.

∂u

∂θ
(r, 0) = 0 → R(r)Θ′(0) = 0 → Θ′(0) = 0

∂u

∂θ

(
r,
π

3

)
= 0 → R(r)Θ′

(π
3

)
= 0 → Θ′

(π
3

)
= 0

Solve the ODE for Θ.
d2Θ

dθ2
= −λΘ

Check to see whether there are positive eigenvalues: λ = µ2.

d2Θ

dθ2
= −µ2Θ

The general solution can be written in terms of sine and cosine.

Θ(θ) = C1 cosµθ + C2 sinµθ

Differentiate it with respect to θ.

Θ′(θ) = µ(−C1 sinµθ + C2 cosµθ)

Apply the boundary conditions to determine C1 and C2.

Θ′(0) = µ(C2) = 0

Θ′
(π

3

)
= µ

(
−C1 sinµ

π

3
+ C2 cosµ

π

3

)
= 0

This first equation gives C2 = 0, which makes the second equation reduce to −C1µ sinµπ3 = 0. To
avoid the trivial solution, we insist that C1 6= 0.

sinµ
π

3
= 0

µ
π

3
= nπ, n = 1, 2, . . .

µ = 3n

There are positive eigenvalues λ = (3n)2, and the eigenfunctions associated with them are

Θ(θ) = C1 cosµθ → Θn(θ) = cos 3nθ.

Using λ = 9n2, solve the ODE for R now.

r

R

d

dr

(
r
dR

dr

)
= 9n2

Expand the left side.
r

R
(R′ + rR′′) = 9n2

Multiply both sides by R and bring all terms to the left side.

r2R′′ + rR′ − 9n2R = 0
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This is an equidimensional ODE, so it has solutions of the form R(r) = rm.

R = rm → R′ = mrm−1 → R′′ = m(m− 1)rm−2

Substitute these formulas into the ODE and solve the resulting equation for m.

r2m(m− 1)rm−2 + rmrm−1 − 9n2rm = 0

m(m− 1)rm +mrm − 9n2rm = 0

m(m− 1) +m− 9n2 = 0

m2 − 9n2 = 0

(m+ 3n)(m− 3n) = 0

m = {−3n, 3n}

Two solutions to the ODE are R = r−3n and R = r3n. By the principle of superposition, the
general solution for R is a linear combination of these two.

R(r) = Ar−3n +Br3n

Now check to see if zero is an eigenvalue.

d2Θ

dθ2
= 0

The general solution is a straight line.

Θ(θ) = C3θ + C4

Apply the two boundary conditions to determine C3 and C4.

Θ′(0) = C3 = 0

Θ′
(π

3

)
= C3 = 0

C4 remains arbitrary.
Θ(θ) = C4

The trivial solution is not obtained, so zero is an eigenvalue. Using λ = 0, solve the ODE for R
now.

r

R

d

dr

(
r
dR

dr

)
= 0

Multiply both sides by R/r.
d

dr

(
r
dR

dr

)
= 0

Integrate both sides with respect to r.

r
dR

dr
= D1

Divide both sides by r.
dR

dr
=
D1

r
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Integrate both sides with respect to r once more.

R(r) = D1 ln r +D2

Check to see if there are negative eigenvalues: λ = −γ2.

d2Θ

dθ2
= γ2Θ

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Θ(θ) = C5 cosh γθ + C6 sinh γθ

Differentiate it with respect to θ.

Θ′(θ) = γ(C5 sinh γθ + C6 cosh γθ)

Apply the two boundary conditions to determine C5 and C6.

Θ′(0) = γ(C6) = 0

Θ′
(π

3

)
= γ

(
C5 sinh γ

π

3
+ C6 cosh γ

π

3

)
= 0

This first equation gives C6 = 0, which makes the second equation reduce to C5γ sinh γ π3 = 0. No
nonzero value of γ can satisfy this equation, so C5 = 0.

Θ(θ) = 0

The trivial solution is obtained, so there are no negative eigenvalues. According to the principle
of superposition, the general solution to the PDE is a linear combination of the eigenfunctions
over all the eigenvalues.

u(r, θ) = (A0 ln r +B0) +

∞∑
n=1

(Anr
−3n +Bnr

3n) cos 3nθ

For the solution to remain finite as r → 0, set A0 = 0 and An = 0.

u(r, θ) = B0 +

∞∑
n=1

Bnr
3n cos 3nθ

Use the boundary condition at r = a to determine the remaining constants, B0 and Bn.

u(a, θ) = B0 +

∞∑
n=1

Bna
3n cos 3nθ = f(θ) (1)

To find B0, integrate both sides with respect to θ from 0 to π/3.

ˆ π/3

0

(
B0 +

∞∑
n=1

Bna
3n cos 3nθ

)
dθ =

ˆ π/3

0
f(θ) dθ
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Split up the integral on the left side and bring the constants in front.

B0

ˆ π/3

0
dθ︸ ︷︷ ︸

= π/3

+
∞∑
n=1

Bna
3n

ˆ π/3

0
cos 3nθ dθ︸ ︷︷ ︸
= 0

=

ˆ π/3

0
f(θ) dθ

B0

(π
3

)
=

ˆ π/3

0
f(θ) dθ

Therefore,

B0 =
3

π

ˆ π/3

0
f(θ) dθ.

To get Bn, multiply both sides of equation (1) by cos 3pθ, where p is an integer.

B0 cos 3pθ +
∞∑
n=1

Bna
3n cos 3nθ cos 3pθ = f(θ) cos 3pθ

Integrate both sides with respect to θ from 0 to π/3.

ˆ π/3

0

(
B0 cos 3pθ +

∞∑
n=1

Bna
3n cos 3nθ cos 3pθ

)
dθ =

ˆ π/3

0
f(θ) cos 3pθ dθ

Split up the integral and bring the constants in front.

B0

ˆ π/3

0
cos 3pθ dθ︸ ︷︷ ︸
= 0

+

∞∑
n=1

Bna
3n

ˆ π/3

0
cos 3nθ cos 3pθ dθ =

ˆ π/3

0
f(θ) cos 3pθ dθ

Because the cosine functions are orthogonal, this second integral on the left is zero if n 6= p. Only
if n = p does the integral yield a nonzero result.

Bna
3n

ˆ π/3

0
cos2 3nθ dθ =

ˆ π/3

0
f(θ) cos 3nθ dθ

Bna
3n
(π

6

)
=

ˆ π/3

0
f(θ) cos 3nθ dθ

Therefore,

Bn =
6

πa3n

ˆ π/3

0
f(θ) cos 3nθ dθ.
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